Improvement on storage of banana (Musa sp. cv. Mas) under modified atmosphere

[Penambakan kaedah penyimpanan pisang (Musa sp. kv. Mas) dengan atmosfera terubahsuai]

H. Abdullah*, M. A. Rohaya* and J. Mohd. Yunus**

Key words: banana cv. Mas, storage, modified atmosphere

Abstrak

Kajian terhadap penambahkaan kaedah penyimpanan pisang Mas dengan sistem atmosfera terubahsuai telah dilakukan. Pisang Mas pada peringkat kematangan 7–8 minggu dari tempoh berjantung disirs, dibasuh, direndam di dalam 500 ppm benomil dan dikerikan sebelum dimasukkan ke dalam beg polietilena berketumpatan rendah (LDPE) di dalam kotak kertas tebal beralur. Berat pisang di dalam kotak yang digunakan ialah 5 kg dan 10 kg. Semua perawatan disistrakan prapenyejukan pada suhu 8 °C, penggunaan penyerap etilena dan pengeluaran separa udara sebelum beg tersebut diikat kemas. Suhu penyimpanan ialah 14 °C. Selepas 4 minggu, buah yang disimpan dengan berat 10 kg/kotak mengalami kecederaan CO2 manakala buah yang beratnya 5 kg/kotak tidak mengalami kecederaan tersebut sehingga 6 minggu penyimpanan. Kejadian kecederaan CO2 dipengaruhi oleh kandungan CO2, O2 dan C2H4 di dalam beg LDPE. Penyimpanan dalam bentuk sisir atau gugus tidak mempengaruhi mutu akhir buah.

Abstract

Improvement studies on a storage method for the banana cv. Mas under modified atmosphere were carried out. Fruit at maturity stage of 7–8 weeks from flower emergence were dehanded, washed, dipped in 500 ppm benomyl and dried before packing into low density polyethylene (LDPE) bags in corrugated fibreboard boxes. The weight of banana in the bags were either 5 kg or 10 kg. Treatments included precooling at 8 °C, the use of ethylene absorbent in storage bags and partial evacuation of air before tight sealing of bags. Storage temperature was 14 °C. After 4 weeks, the fruit packed in 10 kg/box developed CO2 injury, whereas no such injury was detected with fruit packed in 5 kg/box even after 6 weeks of storage. The occurrence of CO2 injury was influenced by the content of CO2, O2 and C2H4 inside the LDPE bags. Packing of banana either in the form of hands or clusters did not influence the final quality of the fruit.
Introduction

Modified atmosphere (MA) storage is a method which can be used in conjunction with refrigeration to enhance storage life of some fruits and vegetables (Kader et al. 1989). The underlying principle involved in MA storage is the modification of relative concentrations of CO$_2$ and O$_2$ to appropriate levels, in the atmosphere in which the produce is placed. A modified atmosphere can be created by storing fruits in sealed permeable films such as low density polyethylene (LDPE) bags. As a result of respiration, an atmosphere high in CO$_2$ and low in O$_2$ will ensue with time. Ethylene, a natural gas emitted by fruit which can trigger ripening, can be reduced or eliminated by ethylene absorbent placed in the storage bag (Hardenburg et al. 1990).

With regard to banana, refrigeration at 10–14 °C alone is only sufficient to preserve the greenness of the fruit for 10–34 days (Abdullah et al. 1990). The use of MA in combination with refrigeration can further extend the storage life and hence allows the fruit to be economically transported by sea to distant markets. This method has been applied commercially to transport Cavendish banana from South America to Japan (Shibata, O., Japan Fresh Fruits, Tokyo, pers. comm. 1987) and from the Philippines to West Asia (Roperos, J., Twin Rivers Research Centre, Davao, Philippines, pers. comm. 1984).

The response of banana to MA storage is highly influenced by many factors, especially the variety. Banana cv. Mas when stored by using the same procedure, as has been practised for the Cavendish, tended to develop CO$_2$ injury when allowed to ripen under normal condition (Abdullah, Abd. Shukor, Rohaya et al. 1987; Abdullah et al. 1990). The symptoms and causes of the disorder have been described by Pantastico et al. (1990). To prevent such disorder, the atmosphere inside the bag should be regulated to levels tolerable by the fruit. It appears that CO$_2$ should not exceed 10% while O$_2$ should remain above 1% and ethylene must not exceed 0.35 ppm (Abdullah, Abd. Shukor, Rohaya et al. 1987). Based on this information, an effective 4-week storage system for Mas banana was developed and tested commercially in several trial shipments to Hong Kong and Japan during 1985–87 (Abdullah, Abd. Shukor, Mohd. Salleh et al. 1987). Since 1988, studies have been extended to further improve the storage system of banana so that it can also be used for export shipment by sea to Europe. Besides allowing a longer storage period, a viable system must also be able to fit easily into the existing practices of handling and marketing of banana in Europe. The improvement on storage technology of Mas banana via MA is discussed in this paper.

Materials and methods

Fruit

Banana cv. Mas of approximately 7–8 weeks from flower emergence were purchased from a private grower in Tangkak, Johor. The freshly harvested fruit were immediately transported to the FAMA Complex in Tangkak for packinghouse operations. These comprised the removal of flower remnants, dehanding, washing, dipping in 500 ppm benomyl [Benlate a.i. 50% (w/w)] and drying. Some banana hands were cut into clusters weighing about 500 g each. After drying, the fruit were placed into LDPE bags inside telescopic corrugated fibreboard (CFB) boxes. The fruit were precooled in a forced-air precooler set at 8 °C in unsealed LDPE bags for 70 min. When the pulp temperature had dropped to 14 °C, ethylene absorbents (Cleanpack 20 g sachet) were placed inside the bags. The air inside the bags was partially evacuated by using a household vacuum cleaner followed by sealing the bags approximately 15 cm from the opening.
Experiment 1: Effects of fruit weight and packing form
The fruit were divided into:
- hands weighing a total of 10 kg,
- hands weighing a total of 5 kg, and
- clusters weighing a total of 5 kg.

All fruit were placed in LDPE bags measuring 100 cm x 100 cm x 0.04 mm for 10 kg weight and 80 cm x 80 cm x 0.04 mm for 5 kg weight. The 10 kg packing contained two sachets of ethylene absorbents, whereas the 5 kg packing contained only one sachet. Each treatment was replicated 10 times with each bag in a box representing a replicate.

Experiment 2: Effect of individual wrapping of hands and clusters
This experiment comprised four treatments, namely
- unwrapped hands,
- unwrapped clusters,
- hands wrapped in perforated LDPE bags, and
- clusters wrapped in perforated LDPE bags.

The hands or clusters, individually wrapped or unwrapped, were arranged neatly in LDPE bags inside the CFB boxes. The thickness of perforated bags used to wrap the hands and the clusters was 0.015 mm with 1% perforations. The weight of fruit in each bag for all treatments was 5 kg and contained one 20 g sachet of ethylene absorbent. Each treatment was replicated 10 times.

Storage
After packing, the fruit were transported immediately to the postharvest laboratory, Food Technology Research Centre, MARDI, Serdang in FAMA cold truck for storage in the cold room. The temperature of the truck and the cold room was maintained at 14 °C. In Experiment 1, the storage period was 4 weeks while in Experiment 2, it was 6 weeks.

Determination of O₂, CO₂ and C₂H₄ contents
One mL of the gas sample from each bag was withdrawn weekly with an airtight hypodermic syringe for each gas determination. The gas was injected into a Varian 1420 gas chromatograph fitted with a thermal conductivity detector and a stainless steel column of 150 cm x 3 mm packed with 80–100 mesh Porapak R for CO₂ determination. The carrier gas for CO₂ determination was helium with a flow rate of 30 mL/min and the column temperature was 35 °C. For O₂, a 150 cm x 3 mm stainless steel column packed with molecular sieves 5A mesh 45/60 was used. The flow rate of the carrier gas was similar to that for CO₂. Determination of C₂H₄ was carried out by injecting 1 mL of the gas sample into a Varian 1440 gas chromatograph fitted with a flame ionization detector and a stainless steel column of 180 cm x 4 mm, packed with 100–120 mesh Porapak T. The carrier gas for C₂H₄ determination was nitrogen with a flow rate of 30 mL/min and the column temperature was 100 °C.

Evaluation of fruit quality after storage
After removal from storage, the bags were unsealed and the bananas were induced to ripen with 50 ppm exogenous ethylene for 24 h at 25 °C. Perforated bags used to wrap banana hands or clusters in some of the treatments were not removed during ripening. When the fruit had ripened between colour index 5 and 6 (Lizada et al. 1990), peel and pulp colour, texture, taste, peeling characteristics and overall acceptability were evaluated by using a hedonic scale from 1 to 7 (1 = very bad, 7 = very good). The presence of CO₂ injury was determined according to the symptoms as described by Pantastico et al. (1990). The total soluble solids of the pulp was determined by using a refractometer (HR 1A-Kyowa). For this purpose, one finger without peel, from each hand of banana in
each box was mixed and blended with a kitchen blender.

Results

Effects of fruit weight and packing form

As shown in Table 1, CO₂ levels in all treatments increased after 1-week storage. However, the level was highest in the bags containing 10 kg of fruit, whereas the levels were about the same in the bags with 5 kg of fruit packed either in hands or clusters. The CO₂ concentrations during 2–4 weeks of storage were similar to those of the first week, thus showing that CO₂ equilibrium was already achieved after the first week.

Coinciding with changes in CO₂ concentration, O₂ levels decreased very sharply after 1 week of storage in all treatments. Bags with 10 kg of fruit had lower O₂ level than those with 5 kg of fruit. However, there was no significant difference between bags containing banana of same weight but packed either as hands or clusters. As the storage period was extended, O₂ in the bags with 10 kg of fruit continued to decrease. After 4 weeks, the O₂ level was considered injurious to the fruit. On the other hand, the O₂ levels in the bags having 5 kg of fruit were always maintained within the safe range i.e. 1.9–3.6%.

The built-up of C₂H₄ was higher in the 10 kg than in the 5 kg bags. This trend was maintained throughout storage. Fruit from all treatments were still green and fresh when they were removed from storage. However, fruit packed in 10 kg/bag thereafter developed CO₂ injury when allowed to ripen at 25 °C under normal atmosphere. The fruit failed to ripen satisfactorily, developed brown coloured peel with black spots, and were infected by fungi. On the other hand, fruit packed in 5 kg/bag ripened normally without developing any CO₂ injury or other disorders.

Effect of individual wrapping of 5 kg hands and clusters

In LDPE bags containing 5 kg of banana packed by four methods and stored for up to 6 weeks at 14 °C, the concentrations of CO₂, O₂ and C₂H₄ were maintained at 4.0–5.4%, 2.6–5.9% and 0.05–0.28 ppm.

<table>
<thead>
<tr>
<th>Storage period (weeks)</th>
<th>Treatment</th>
<th>CO₂ (%)</th>
<th>O₂ (%)</th>
<th>C₂H₄ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Hands, 10 kg</td>
<td>0.03d</td>
<td>21.1a</td>
<td>0.0d</td>
</tr>
<tr>
<td></td>
<td>Hands, 5 kg</td>
<td>0.03d</td>
<td>21.1a</td>
<td>0.0d</td>
</tr>
<tr>
<td></td>
<td>Clusters, 5 kg</td>
<td>0.03d</td>
<td>21.1a</td>
<td>0.0d</td>
</tr>
<tr>
<td>1</td>
<td>Hands, 10 kg</td>
<td>8.4a</td>
<td>1.5c</td>
<td>0.42a</td>
</tr>
<tr>
<td></td>
<td>Hands, 5 kg</td>
<td>5.0b</td>
<td>2.5b</td>
<td>0.33ab</td>
</tr>
<tr>
<td></td>
<td>Clusters, 5 kg</td>
<td>5.5b</td>
<td>2.2bc</td>
<td>0.28b</td>
</tr>
<tr>
<td>2</td>
<td>Hands, 10 kg</td>
<td>7.6a</td>
<td>1.3b</td>
<td>0.73a</td>
</tr>
<tr>
<td></td>
<td>Hands, 5 kg</td>
<td>5.9b</td>
<td>2.1b</td>
<td>0.51b</td>
</tr>
<tr>
<td></td>
<td>Clusters, 5 kg</td>
<td>5.5b</td>
<td>1.9b</td>
<td>0.42b</td>
</tr>
<tr>
<td>3</td>
<td>Hands, 10 kg</td>
<td>6.8a</td>
<td>1.5b</td>
<td>0.57a</td>
</tr>
<tr>
<td></td>
<td>Hands, 5 kg</td>
<td>5.6b</td>
<td>2.5b</td>
<td>0.50a</td>
</tr>
<tr>
<td></td>
<td>Clusters, 5 kg</td>
<td>5.1b</td>
<td>2.9b</td>
<td>0.43a</td>
</tr>
<tr>
<td>4</td>
<td>Hands, 10 kg</td>
<td>6.9a</td>
<td>0.5c</td>
<td>0.49a</td>
</tr>
<tr>
<td></td>
<td>Hands, 5 kg</td>
<td>5.2b</td>
<td>3.4b</td>
<td>0.36a</td>
</tr>
<tr>
<td></td>
<td>Clusters, 5 kg</td>
<td>4.8c</td>
<td>3.6b</td>
<td>0.32a</td>
</tr>
</tbody>
</table>

Each value is the mean of 10 replicates. Mean values with the same letters in the same column are not significantly different at 5% level by DMRT
respectively throughout storage (Table 2). These levels are considered ideal for storage. Wrapping the individual hand or cluster in perforated PE bags did not alter the individual gas concentration in the sealed storage bag. All fruit ripened satisfactorily after exogenous application of 50 ppm C$_2$H$_4$ at 25 °C (Table 3).

Apparently, the fruit wrapped in perforated PE bags had a better skin appearance than the unwrapped ones, being glossy and very bright golden yellow in colour. All fruit were highly acceptable organoleptically. In addition, the total soluble solids were maintained at around 25% levels, almost similar to unstored ripe fruit.

Table 2. Effect of individual wrapping of hands or clusters of banana cv. Mas on the concentrations of CO$_2$, O$_2$ and C$_2$H$_4$ in LDPE bags during storage at 14 °C

<table>
<thead>
<tr>
<th>Storage period (weeks)</th>
<th>Treatment</th>
<th>CO$_2$ (%)</th>
<th>O$_2$ (%)</th>
<th>C$_2$H$_4$ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>0.03b</td>
<td>21.1a</td>
<td>0.0b</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.03b</td>
<td>21.1a</td>
<td>0.0b</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.03b</td>
<td>21.1a</td>
<td>0.0b</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>0.03b</td>
<td>21.1a</td>
<td>0.0b</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>4.8a</td>
<td>3.2b</td>
<td>0.24a</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>5.4a</td>
<td>2.6b</td>
<td>0.26a</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4.8a</td>
<td>2.6b</td>
<td>0.27a</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>5.4a</td>
<td>2.6b</td>
<td>0.28a</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>4.8a</td>
<td>3.2b</td>
<td>0.07a</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>4.6a</td>
<td>3.8b</td>
<td>0.07a</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4.6a</td>
<td>3.0b</td>
<td>0.07a</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>4.8a</td>
<td>3.0b</td>
<td>0.07a</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>4.4a</td>
<td>3.7b</td>
<td>0.08a</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>4.7a</td>
<td>4.3b</td>
<td>0.07a</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4.7a</td>
<td>2.7b</td>
<td>0.07a</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>5.1a</td>
<td>3.4b</td>
<td>0.07a</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>4.9a</td>
<td>3.4b</td>
<td>0.08a</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>5.0a</td>
<td>3.8b</td>
<td>0.07a</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4.9a</td>
<td>2.7b</td>
<td>0.07a</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>5.5a</td>
<td>3.7b</td>
<td>0.08a</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>4.2a</td>
<td>5.0b</td>
<td>0.05a</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>4.3a</td>
<td>5.0b</td>
<td>0.06a</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4.4a</td>
<td>4.3b</td>
<td>0.06a</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>4.9a</td>
<td>4.9b</td>
<td>0.09a</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>4.0a</td>
<td>5.9b</td>
<td>0.07a</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>4.2a</td>
<td>5.1b</td>
<td>0.05a</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4.2a</td>
<td>3.6b</td>
<td>0.05a</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>4.7a</td>
<td>4.1b</td>
<td>0.09a</td>
</tr>
</tbody>
</table>

Each value is the mean of 10 replicates comprising 5 kg each. Mean values with the same letters in the same column are not significantly different at 5% level by DMRT

Treatment:
A = hands
B = clusters
C = hands wrapped in perforated LDPE bags
D = clusters wrapped in LDPE bags
Table 3. Quality of ripe banana cv. Mas after 6 weeks of storage in modified atmosphere at 14 °C

<table>
<thead>
<tr>
<th>Treatment*</th>
<th>Peel colour</th>
<th>Pulp colour</th>
<th>Texture</th>
<th>Taste</th>
<th>Peeling characteristics</th>
<th>TSS* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.5a</td>
<td>5.6a</td>
<td>6.9a</td>
<td>6.9a</td>
<td>7.0a</td>
<td>25.6a</td>
</tr>
<tr>
<td>B</td>
<td>6.5a</td>
<td>6.1a</td>
<td>7.0a</td>
<td>7.0a</td>
<td>7.0a</td>
<td>25.0a</td>
</tr>
<tr>
<td>C</td>
<td>7.0a</td>
<td>5.8a</td>
<td>6.7a</td>
<td>7.0a</td>
<td>7.0a</td>
<td>24.8a</td>
</tr>
<tr>
<td>D</td>
<td>7.0a</td>
<td>5.9a</td>
<td>7.0a</td>
<td>7.0a</td>
<td>7.0a</td>
<td>25.8a</td>
</tr>
</tbody>
</table>

Each value is the mean of 10 replicates. Mean values with the same letters are not significantly different at 5% level by DMRT

*Mean TSS of ripe unstored fruit is 25.0%
ripening, can be minimized. Fruit sold in the form of clusters would also be more affordable to consumers who prefer to purchase fruit in smaller quantity.

Acknowledgements
The authors wish to express their appreciation to Mr Talip Yacob and Mr Zhokarnain Jaafar for their assistance which has led to the completion of the study.

References

Accepted for publication on 15 September 1993
NOTES FOR CONTRIBUTORS
(The research journal of the Malaysian Agricultural Research and Development Institute
is published twice a year, in June and December)

Contributions are welcomed from scientists of all nations particularly those working in tropical and sub-tropical
countries. Contributions must be written in English or Bahasa Malaysia.

Acceptance of contributions. Submission of a paper is taken to imply that the material has not previously been
published, and is not being considered for publication elsewhere. Papers published in the MARDI Research Journal may
not be printed or published in translation without the written permission of the Director General of the Institute.

General Layout. Contributors should conform to the layout as practised by this journal. Numerical data, which should
only be included if they are essential to the argument, can be presented either in the form of tables or diagrams, but
should never be given in both forms.

Typescripts. Three copies of the script or computer print-out (minimum of NLQ) should be submitted, typed with
double spacing throughout, on one side only.

Title. It is essential that the title of each paper should be short (not exceeding 15 words), concise and should contain
the maximum relevant information particularly, the crop, the nature of the investigation, the factors under review,
climatic or geographic area in which the work was done.

Headings. The following details should be given at the head of the first sheet. The full title of the paper; a short title
for running headings, not exceeding 48 characters (counting each letter and space as one character; the full name(s) of
the author(s); the address at which the work was carried out and the present address(es) of the author(s); and the
keywords.

Abstract. A short and accurate abstract must be included. The preparation of the abstract is not an editorial responsibility.
Papers received without an abstract will be returned to the author. Author(s) should also provide an abstract in Bahasa
Malaysia for papers written in English and vice versa.

Experimentation. The MARDI Research Journal publishes articles based on sound methods of experimentation. It is
therefore important, where appropriate, that papers should include: an adequate account of layout, full description of
treatments and appropriate statistical significance treatment where relevant. Authors are urged to give the dates when the
experiments were carried out.

Illustration. These should only be included where they are essential in the paper, and will only be accepted if of high
quality. Photographs should be provided as unmounted glossy black and white prints. Captions must be indicated
separately. Prints should not be damaged. Colour plates should be supplied in the form of colour slides only when
absolutely necessary. Each illustration should bear the name of the author(s) and the figure number, written clearly in the
margin or on the back.

Diagrams. Diagrams should be drawn in Indian ink on white art paper or drafting film of A4 size. The precise position
of all lettering should be indicated. Each diagram should bear the name of the author(s) and the figure number, written
clearly in the margin or on the back.

Legends. The legends for all illustrations should be given on a separate sheet of paper, clearly marked with the number
of each plate or diagram. The ideal position for each diagram should be marked in the text, although it may not always
be possible to put the illustration exactly in the position indicated. Plates will normally be bound immediately after the
end of the paper.

Tables. Each table should be typed on a separate sheet of paper. Its preferred position should be indicated on the
typescript. Each table should be numbered and must have a concise title.

Units. Data should be presented in metric unit.

References. The Harvard system of citation is used throughout as follows; name and initial(s) of author(s); year of
publication in brackets, further distinguished by the addition of small letters a, b, c, etc. where there are citations to more
than one paper published by the same author(s) in one year; contracted title of periodical as given in the World List of
Scientific Periodicals; volume number in arabic figures, page numbers. In the text, references should be denoted by
giving the name of the author(s) with the date of publications in brackets.

 e.g. Brown (1937) ..., (Brown 1937), (Brown 1937a; Jones and Smith 1942a, b). Where more than two
authors are quoted in the text, only the first name need to be shown followed by et al. (For details
please refer to the MARDI Guidelines for the Preparation of Scientific Papers and Reports).

Referees. All manuscripts will be refereed.

Proofs. One set of single-sided page proofs will be sent to each author, and it is the responsibility of the author(s) to
submit corrections to the Editor, by returning to him the printers' marked proof with all corrections.

For further details on manuscript preparation, please refer to 'Guidelines for the Preparation of Scientific Papers and

Reprints. Fifty reprints will be sent gratis to the author(s).

All correspondence concerning submission, subscriptions to the Journal and other business matters should be addressed to
the Programme Head, Publication Unit, MARDI, P. O. Box 12301, 50774 Kuala Lumpur, Malaysia.